1. D. Barber, C.K.I. Williams, Gaussian processes for Bayesian classification via hybrid Monte Carlo, in: M.C. Mozer, M.I. Jordan, T. Petsche (Eds.), Advances in Neural Information Processing Systems, Vol. 9, MIT Press, Cambridge, MA, 1997, pp. 340–346.
2. A tutorial on support vector machines for pattern recognition;Burges;Data Mining Knowledge Discovery,1998
3. O. Chapelle, V.N. Vapnik, Model selection for support vector machines, in: S.A. Solla, T.K. Leen, K.-R. Müller (Eds.), Advances in Neural Information Processing Systems, Vol. 12, MIT Press, Cambridge, MA, 2000, pp. 230–236.
4. Choosing multiple parameters for support vector machines;Chapelle;Mach. Learning,2002
5. N. Cristianini, C. Campbell, J. Shawe-Taylor, Dynamically adapting kernels in support vector machines, in: M. Kearns, S.A. Solla, D. Cohn (Eds.), Advances in Neural Information Processing Systems, Vol. 11, MIT Press, Cambridge, MA, 1999, pp. 204–210.