1. Agrawal, S., Barrington, L., Bromberg, C., Burge, J., Gazen, C., Hickey, J., 2019. Machine learning for precipitation nowcasting from radar images. In: 33rd Conference on Neural Information Processing Systems. (NeurIPS 2019), Vancouver, Canada, pp. 1–6, arXiv:1912.12132 URL: arXiv:1912.12132 https://arxiv.org/pdf/1912.12132.pdf.
2. Mcgill algorithm for precipitation nowcasting by lagrangian extrapolation (MAPLE) applied to the South Korean radar network. Part I: Sensitivity studies of the Variational Echo Tracking (VET) technique;Bellon;Asia-Pac. J. Atmos. Sci.,2010
3. A North American hourly assimilation and model forecast cycle: The rapid refresh;Benjamin;Mon. Weather Rev.,2016
4. Heavy rainfall hazards;Carrega,2004
5. TITAN: Thunderstorm identification, tracking, analysis, and nowcasting-A radar-based methodology;Dixon;J. Atmos. Ocean. Technol.,1993