1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jozefowicz, R., Jia, Y., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Schuster, M., Monga, R., Moore, S., Murray, D., Olah, C., Shlens, J., Steiner, B., Sustkever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y. (2015) https://tensorflow.org.
2. Learning long-term dependencies with gradient descent is difficult;Bengio;IEEE Trans. Neural Netw.,1994
3. A review of the application of machine learning and data mining approaches in continuum materials mechanics;Bock;Front. Mater.,2019
4. One for all: universal material model based on minimal state-space neural networks;Bonatti;Sci. Adv.,2021
5. Data for: on the importance of self-consistency in recurrent neural network models representing elasto-plastic solids;Bonatti;Zenodo,2021