Experimental investigation and prediction of wear properties of Al/SiC metal matrix composites produced by thixomoulding method using Artificial Neural Networks
Author:
Publisher
Elsevier BV
Subject
Applied Mathematics,General Mathematics
Reference30 articles.
1. Computational and experimental analysis of particulate distribution during Al–SiC MMC fabrication;Naher;Composites: Part A,2007
2. High stress abrasive wear behaviour of aluminium hard particle composites: effect of experimental parameters, particle size and volume fraction;Mondal;Tribol Int,2006
3. Sliding and abrasive wear behaviour of an Al 2024-SiC particle reinforced composite;Alpas;Scripta Metal Mater,1990
4. Tensile and wear properties of aluminium composites;Suresh;Wear,2003
5. Effect of solidification rate and metal feedability on porosity and SiC/Al2O3 particle distribution in an Al–Si–Mg (359) alloy;Samuel;Compos Sci Technol,1995
Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Prediction of effect of fabrication parameters on the properties of B4C ceramic particle reinforced AA2024 matrix nanocomposites using neural networks;Materials Today Communications;2024-06
2. Synergistic approach to tribological characterization of hybrid aluminum metal matrix composites with ZrB2 and fly ash: Experimental and predictive insights;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2024-05-29
3. A Critical Review of Fabrication Techniques and Possible Interfacial Reactions of Silicon Carbide Reinforced Aluminium Metal Matrix Composites;Metal Matrix Composites: A Modern Approach to Manufacturing;2024-03-21
4. Properties prediction of composites based on machine learning models: A focus on statistical index approaches;Materials Today Communications;2024-03
5. Integrating Genetic Algorithms, Particle Swarm, and Neural Networks for Wear Optimization of AA7178 Matrix with Nano-SiC Particles;JOM;2023-10-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3