Modeling the wear of Polyamide 66 using artificial neural network
Author:
Publisher
Elsevier BV
Subject
Applied Mathematics,General Mathematics
Reference23 articles.
1. Modeling the sliding wear and friction properties of polyphenylene sulfide composites using artificial neural networks;Gyurova;Wear,2010
2. Frangu L, Ripa M. Artificial neural networks applications in Tribology – a survey. The Annual of University of Galati, Facicle VIII 2004, Tribology, ISSN 1221–4590. p. 35–42.
3. Abrasive wear resistance of TiN/NbN multi-layers: measurement and neural network modeling;Rutherford;Surf Coat Technol,1996
4. Preliminary investigations of neural network techniques to predict tribological properties;Jones;Tribol Trans,1997
5. Wear volume prediction with artificial neural networks;Velten;Tribol Int,2000
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Tribology testing, measurements, and evaluation;Principles of Engineering Tribology;2023
2. Prediction of mechanical properties for polyetheretherketone composite reinforced with graphene and titanium powder using artificial neural network;Materials Today: Proceedings;2022
3. Modeling and prediction of tribological properties of polyetheretherketone composite reinforced with graphene and titanium powder using artificial neural network;Innovations in Graphene-Based Polymer Composites;2022
4. Specific Wear Rate Modeling of Polytetraflouroethylene Composites via Artificial Neural Network (ANN) and Adaptive Neuro Fuzzy Inference System (ANFIS) Tools;Virtual Assistant;2021-10-13
5. Tribological Behavior of Ultra-High Molecular Weight Polyethylene Polymer with Artificial Neural Network Modeling;Kocaeli Journal of Science and Engineering;2021-09-22
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3