Machine learning-enabled identification of micromechanical stress and strain hotspots predicted via dislocation density-based crystal plasticity simulations

Author:

Eghtesad AdnanORCID,Luo QixiangORCID,Shang Shun-Li,Lebensohn Ricardo A.ORCID,Knezevic Marko,Liu Zi-KuiORCID,Beese Allison M.ORCID

Funder

Los Alamos National Laboratory

National Energy Technology Laboratory

U.S. Department of Energy

Publisher

Elsevier BV

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Reference80 articles.

1. Crystal plasticity finite element simulations using a database of discrete Fourier transforms;Alharbi;Int. J. Plast.,2015

2. A criterion for slip transfer at grain boundaries in Al;Alizadeh;Scr. Mater.,2020

3. Random forests for global sensitivity analysis: a selective review;Antoniadis;Reliab. Eng. Syst. Saf.,2021

4. A study of microstructure-driven strain localizations in two-phase polycrystalline HCP/BCC composites using a multi-scale model;Ardeljan;Int. J. Plast.,2015

5. Accurate Machine Learning In Materials Science Facilitated By Using Diverse Data Sources;Batra,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3