Construction of hierarchical FeIn2S4/BiOBr S-scheme heterojunction with enhanced visible-light photocatalytic performance for antibiotics degradation
Author:
Publisher
Elsevier BV
Subject
Mechanics of Materials,General Chemical Engineering
Reference81 articles.
1. Enhanced photocatalytic performance of ZnO/Bi2WO6 heterojunctions toward photodegradation of fluoroquinolone-based antibiotics in wastewater;Chankhanittha;J. Phys. Chem. Solids,2021
2. Crystal defect-mediated 010 facets of Bi2MoO6 nanosheets for removal of TC: Enhanced mechanism and degradation pathway;Yang;Appl. Surf. Sci.,2021
3. Revealing the stability of CuWO4/g-C3N4 nanocomposite for photocatalytic tetracycline degradation from the aqueous environment and DFT analysis;Vinesh;Environ. Res.,2022
4. Solvothermally grown BiOCl catalyst for photodegradation of cationic dye and fluoroquinolone-based antibiotics;Senasu;J. Mater. Sci-Mater. El.,2020
5. Synthesis of Z-scheme multi-shelled ZnO/AgVO3 spheres as photocatalysts for the degradation of ciprofloxacin and reduction of chromium(VI);Song;J. Mater. Sci.,2020
Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Integration of Bi2Ti2O7 and CaIn2S4 to Form a Z-Scheme Heterojunction with Enhanced Charge Transfer for Superior Photocatalytic Activity;Industrial & Engineering Chemistry Research;2024-08-23
2. Interfacial-electric-field guiding design of a Type-I FeIn2S4@ZnIn2S4 heterojunction with ohmic-like charge transfer mechanism for highly efficient solar H2 evolution;Applied Surface Science;2024-08
3. Ternary Z-scheme α-Fe2O3/BiOBr/g-C3N4 photocatalyst for highly efficient hydrogen production coupled with diverse antibiotic degradation;Journal of Environmental Chemical Engineering;2024-08
4. Flower shaped Zn2In2S5/FeIn2S4 as a promising S-Scheme heterojunction photocatalyst for superior ciprofloxacin removal;Materials Today Communications;2024-06
5. A novel Co3O4/ZnSe S-scheme heterojunction photocatalyst with efficient carrier separation and enhanced light absorption for photocatalytic hydrogen evolution;Journal of Alloys and Compounds;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3