Innovative solar distillation system with prismatic absorber basin: Experimental analysis and LSTM machine learning modeling coupled with great wall construction algorithm
Author:
Publisher
Elsevier BV
Reference66 articles.
1. Efficiency improvement of vertical solar stills – a review;Abbaspour;Sol. Energy,2022
2. Utilization of ensemble random vector functional link network for freshwater prediction of active solar stills with nanoparticles;Abd Elaziz;Sustain. Energy Technol. Assess.,2021
3. Machine learning-aided modeling for predicting freshwater production of a membrane desalination system: a long-short-term memory coupled with election-based optimizer;Abd Elaziz;Alex. Eng. J.,2024
4. Improving the thermo-economic performance of hemispherical solar distiller using copper oxide nanofluids and phase change materials: experimental and theoretical investigation;Abdelgaied;Sol. Energy Mater. Sol. Cells,2022
5. Performance improvement of solar distiller using hang wick, reflectors and phase change materials enriched with nano-additives;AbuShanab;Case Stud. Therm. Eng.,2022
Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Band gap engineering of g-C3N4/CuS and its application in Solar Still;Chemical Physics Impact;2024-12
2. A novel solar-driven vacuum desalination unit: Simultaneously venturi-induced self-evaporation and self-condensation with fresh water cycle;Solar Energy;2024-11
3. Development of adaptive neuro-fuzzy inference system and stochastic simulation for mean droplet size modeling in rotatory agitated columns under different mass transfer scenarios;International Communications in Heat and Mass Transfer;2024-11
4. Prediction of hydrogen production in proton exchange membrane water electrolysis via neural networks;International Journal of Thermofluids;2024-11
5. Comparative tests on the performance of solar stills enhanced by pebbles, corrugated plate and membrane distillation and construction of performance prediction model for rock type still;Solar Energy Materials and Solar Cells;2024-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3