Ornidazole degradation by PMS activated by Co-Zr-TiO2 with abundant oxygen vacancies: Performance, mechanism and degradation pathway
Author:
Publisher
Elsevier BV
Reference82 articles.
1. A novel system coupling an electro-Fenton process and an advanced biological process to remove a pharmaceutical compound, metronidazole;Aboudalle;J. Hazard. Mater.,2021
2. Green synthesis of photocatalytic TiO2 nanoparticles for potential application in photochemical degradation of ornidazole;Ahmad;J. Inorg. Organomet. Polym. Mater.,2021
3. Efficient tuning of the opto-electronic properties of sol-gel-synthesized al-doped titania nanoparticles for perovskite solar cells and functional textiles;Alsulami;Gels,2023
4. Radical generation by the interaction of transition metals with common oxidants;Anipsitakis;Environ. Sci. Technol.,2004
5. Efficient Zr-doped FS–TiO2/SiO2 photocatalyst and its performance in acrylonitrile removal under simulated sunlight;Bharti;Appl. Phys. A,2020
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Two-dimensional MBene combined with cobalt nanoparticles enabling highly efficient peroxymonosulfate activation for ornidazole degradation;Separation and Purification Technology;2025-02
2. Enhanced the stability and efficiency of Co S /PMS degradation towards metronidazole: Zirconium doping and vacancy engineering;Journal of Environmental Chemical Engineering;2024-10
3. Degradation of tetracycline by photocatalysis combined with activated peroxymonsulfate over S-scheme BiVO4/Fe2O3 heterojunction;Journal of Environmental Chemical Engineering;2024-10
4. Z-scheme heterojunction Fe-g-C3N4/MoO3-x photocatalyst can effectively activate peroxymonosulfate to degrade humic acid under visible light irradiation;Journal of Environmental Chemical Engineering;2024-10
5. Anchoring highly dispersed FeCo/C nanoparticles within zeolite 13X to promote 1O2 generation in the degradation of tetracycline hydrochloride;Journal of Environmental Chemical Engineering;2024-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3