1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jozefowicz, R., Jia, Y., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Schuster, M., Monga, R., Moore, S., Murray, D., Olah, C., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2016. Tensorflow: A system for large-scale machine learning, in: 12th Symposium on Operating Systems Design and Implementation 2016. pp. 265–283.
2. Agency for Data Supply and Efficiency, 2020. DHM/Nedbør (0.4m grid), Orto Forår [WWW Document]. URL download.kortforsyningen.dk (accessed 9.30.20). Usage conditions: https://download.kortforsyningen.dk/content/vilkår-og-betingelser.
3. Agency for Data Supply and Efficiency and Danish Municipalities, 2020. GeoDanmark [WWW Document]. URL download.kortforsyningen.dk (accessed 9.30.20). Usage conditions: https://www.geodanmark.dk/brugeradgang/vilkaar-for-data-anvendelse/.
4. Amidi, A., Amidi, S., 2019. Convolutional Neural Networks cheatsheet [WWW Document]. URL https://stanford.edu/∼shervine/teaching/cs-230/cheatsheet-convolutional-neural-networks (accessed 2.25.21).
5. Using machine learning models, remote sensing, and GIS to investigate the effects of changing climates and land uses on flood probability;Avand;J. Hydrol.,2020