Increased performance in the short-term water demand forecasting through the use of a parallel adaptive weighting strategy
Author:
Funder
Foundation for Science and Technology
Publisher
Elsevier BV
Subject
Water Science and Technology
Reference33 articles.
1. Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada;Adamowski;Water Resour. Res.,2012
2. A short-term, pattern-based model for water-demand forecasting;Alvisi;J. Hydroinf.,2007
3. Identifying prominent explanatory variables for water demand prediction using artificial neural networks: a case study of bangkok;Babel;Water Resour. Manage.,2011
4. Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models;Bai;J. Hydrol.,2015
5. Bakker, M., Van Duistc, H., Van Schagenb, K., Vreeburgd, J., Rietvelda, L., 2013. Improving the performance of water demand forecasting models by using weather input. 12th International Conference on Computing and Control for the Water Industry, CCWI2013. Procedia Engineering (70): 93–102.
Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Short-term water demand forecasting: a review;Australasian Journal of Water Resources;2024-05-14
2. Artificial Intelligence for Water Consumption Assessment: State of the Art Review;Water Resources Management;2024-04-25
3. Projection of ecological water consumption under carbon emission in Chinese provinces;Journal of Cleaner Production;2024-04
4. Data Science for the Promotion of Sustainability in Smart Water Distribution Systems;Communications in Computer and Information Science;2024
5. An interval water demand prediction method to reduce uncertainty: A case study of Sichuan Province, China;Environmental Research;2023-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3