1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2016. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. https://doi.org/10.48550/arXiv.1603.04467.
2. The CAMELS data set: catchment attributes and meteorology for large-sample studies;Addor;Hydrol. Earth Syst. Sci.,2017
3. Goodness-of-fit criteria for hydrological models: Model calibration and performance assessment;Althoff;J. Hydrol.,2021
4. Application of artificial neural network ensembles in probabilistic hydrological forecasting;Araghinejad;J. Hydrol.,2011
5. CANOPEX: A Canadian hydrometeorological watershed database;Arsenault;Hydrol. Process.,2016