Hydrological time series forecasting via signal decomposition and twin support vector machine using cooperation search algorithm for parameter identification
Author:
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Publisher
Elsevier BV
Subject
Water Science and Technology
Reference52 articles.
1. Extreme Learning Machines: A new approach for prediction of reference evapotranspiration;Abdullah;J. Hydrol.,2015
2. Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs;Adnan;J. Hydrol.,2020
3. Synergistic gains from the multi-objective optimal operation of cascade reservoirs in the Upper Yellow River basin;Bai;J. Hydrol.,2015
4. Hydropower plant operation rules optimization response to climate change;Chang;Energy,2018
5. Twin support vector machines with privileged information;Che;Inform Sci.,2021
Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Improving Earth surface temperature forecasting through the optimization of deep learning hyper-parameters using Barnacles Mating Optimizer;Franklin Open;2024-09
2. Spatio-temporal deep learning model for accurate streamflow prediction with multi-source data fusion;Environmental Modelling & Software;2024-07
3. Quantifying the effects of future environmental changes on water supply and hydropower generation benefits of cascade reservoirs in the Yellow River Basin within the framework of reservoir water supply and demand uncertainty;Journal of Hydrology: Regional Studies;2024-04
4. Hybridized artificial intelligence models with nature-inspired algorithms for river flow modeling: A comprehensive review, assessment, and possible future research directions;Engineering Applications of Artificial Intelligence;2024-03
5. Exploitation of the ensemble-based machine learning strategies to elevate the precision of CORDEX regional simulations in precipitation projection;Earth Science Informatics;2024-02-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3