An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction
Author:
Publisher
Elsevier BV
Subject
Water Science and Technology
Reference175 articles.
1. Extreme learning machines: a new approach for prediction of reference evapotranspiration;Abdullah;J. Hydrol.,2015
2. Development of an artificial neural network based multi-model ensemble to estimate the northeast monsoon rainfall over south peninsular India: an application of extreme learning machine;Acharya;Clim. Dyn.,2014
3. Performance of general circulation models and their ensembles for the prediction of drought indices over India during summer monsoon;Acharya;Nat. Hazards,2013
4. Multi-stage hybridized online sequential extreme learning machine integrated with Markov Chain Monte Carlo copula-Bat algorithm for rainfall forecasting;Ali;Atmos. Res.,2018
5. Modelling long-term groundwater fluctuations by extreme learning machine using hydro-climatic data;Alizamir;Hydrol. Sci. J.,2017
Cited by 520 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhanced multi-step streamflow series forecasting using hybrid signal decomposition and optimized reservoir computing models;Expert Systems with Applications;2024-12
2. Dynamic assessment of the impact of compound dry-hot conditions on global terrestrial water storage;Remote Sensing of Environment;2024-12
3. Water resource forecasting with machine learning and deep learning: A scientometric analysis;Artificial Intelligence in Geosciences;2024-12
4. Assessing groundwater behavior and future trends in the Ardabil Aquifer: A comparative study of groundwater modeling system and categorical gradient boosting hybrid model;Expert Systems with Applications;2024-12
5. Analyzing variation of water inflow to inland lakes under climate change: Integrating deep learning and time series data mining;Environmental Research;2024-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3