Author:
Garozzo Raissa,Santagati Cettina,Spampinato Concetto,Vecchio Giuseppe
Reference17 articles.
1. Arjovsky, M., Chintala, S., Bottou, L. 2017. Wasserstein GAN. ArXiv:1701.07875 [Cs, Stat]. http://arxiv.org/abs/1701.07875.
2. Belhi, A., Bouras, A. 2020. CNN Features vs Classical Features for Largescale Cultural Image Retrieval. 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), p. 95–99. https://doi.org/10.1109/ICIoT48696.2020.9089643.
3. Eghbal-zadeh, H., Fischer, L., Hoch, T. 2019. On Conditioning GANs to Hierarchical Ontologies. ArXiv:1905.06586 [Cs, Stat]. http://arxiv.org/abs/1905.06586.
4. Garozzo, R., Murabito, F., Santagati, C., Pino, C., Spampinato, C. 2017. CULTO: An ontology-based annotation tool for data curation in Cultural Heritage. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-2/W5, 267–274. https://doi.org/10.5194/isprs-archives-XLII-2-W5-267-2017.
5. Garozzo, Raissa, Pino, C., Santagati, C., Spampinato, C. 2020. Harnessing the power of artificial intelligence for modelling and understanding cultural heritage data. In: Impact of Industry 4.0 on Architecture and Cultural Heritage: IGI Global. http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-1234-0.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献