Deep reinforcement learning based latency-energy minimization in smart healthcare network
-
Published:2024-06
Issue:
Volume:
Page:
-
ISSN:2352-8648
-
Container-title:Digital Communications and Networks
-
language:en
-
Short-container-title:Digital Communications and Networks
Author:
Su XinORCID, Fang Xin, Cheng ZhenORCID, Gong ZiyangORCID, Choi Chang
Reference38 articles.
1. A. Gatouillat, Y. Badr, B. Massot, E. Sejdić, Internet of medical things: A review of recent contributions dealing with cyber-physical systems in medicine, IEEE Internet of Things Journal 5 (5) (2018) 3810–3822. 2. M. Chen, J. Yang, J. Zhou, Y. Hao, J. Zhang, C.-H. Youn, 5g-smart diabetes: Toward personalized diabetes diagnosis with healthcare big data clouds, IEEE Communications Magazine 56 (4) (2018) 16–23. 3. Z. Ning, P. Dong, X. Wang, X. Hu, L. Guo, B. Hu, Y. Guo, T. Qiu, R. Y. Kwok, Mobile edge computing enabled 5g health monitoring for internet of medical things: A decentralized game theoretic approach, IEEE Journal on Selected Areas in Communications 39 (2) (2021) 463–478. 4. M. Asif-Ur-Rahman, F. Afsana, M. Mahmud, M. S. Kaiser, M. R. Ahmed, O. Kaiwartya, A. James-Taylor, Toward a heterogeneous mist, fog, and cloud-based framework for the internet of healthcare things, IEEE Internet of Things Journal 6 (3) (2019) 4049–4062. 5. Y.-T. Tsai, Z. Y. Lin, A survey on edge computing in bioinformatics and health informatics, in: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), IEEE, 2020, pp. 2203–2208.
|
|