Rail head surface defect magnetic flux leakage signal filtering based on the relativity among the adjacent sensors
Author:
Publisher
Elsevier BV
Subject
Applied Mathematics,Electrical and Electronic Engineering,Condensed Matter Physics,Instrumentation
Reference25 articles.
1. Supervised machine learning approach for detecting missing clamps in rail fastening system from differential eddy current measurements;Chandran;Appl. Sci.,2021
2. Kim, Geonwoo, et al. “Development of phased array ultrasonic system for detecting rail cracks.” Sensors and Actuators A: Physical 311 (2020): 112086.
3. Zheng, Zhong, et al. “Automated rail surface crack analytics using deep data-driven models and transfer learning.” Sustainable Cities and Society 70 (2021): 102898..
4. Rail component detection, optimization, and assessment for automatic rail track inspection;Ying Li;IEEE Trans. Intell. Transp. Syst.,2014
5. Kim, YoungChae, et al. “Design of spider-type non-destructive testing device using magnetic flux leakage.” 2019 IEEE Student Conference on Electric Machines and Systems (SCEMS 2019). IEEE, 2019.
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Surface Crack Size Estimation Based on Quantification and Decoupling of Magnetic Flux Leakage (MFL) Signals of Circular Array Sensors;IEEE Sensors Journal;2024-05-15
2. Data-Driven Semantic Segmentation Method for Detecting Metal Surface Defects;IEEE Sensors Journal;2024-05-01
3. The homogeneity effects of magnetic flux density distribution on the detection of railhead surface defects via the magnetic flux leakage method;Insight - Non-Destructive Testing and Condition Monitoring;2023-12-01
4. A Signal Filtering Method for Magnetic Flux Leakage Detection of Rail Surface Defects Based on Minimum Entropy Deconvolution;International Journal of Swarm Intelligence Research;2023-10-25
5. A Steel Rail Surface Defect Detection and Recognition Method Based on Mask R-Transformer;2023 IEEE 6th International Conference on Pattern Recognition and Artificial Intelligence (PRAI);2023-08-18
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3