Automated intelligent measurement of cracks on bridge piers using a ring-climbing vision scanning operation robot
-
Published:2024-09
Issue:
Volume:237
Page:115197
-
ISSN:0263-2241
-
Container-title:Measurement
-
language:en
-
Short-container-title:Measurement
Author:
Du Hao, Wang HuifengORCID, Zhang Xiaowei, Peng Haonan, Gao Rong, Zheng Xueyan, Tong Yaxiong, Shan Yuanhe, Pan Zefeng, Huang He
Reference37 articles.
1. Concrete Bridge defects identification and localization based on classification deep convolutional neural networks and transfer learning;Zoubir;Remote Sens.,2022 2. Multi-classifier for reinforced concrete bridge defects;Hüthwohl;Autom. Constr.,2019 3. Y.F. Liu, X. Nie, J.S. Fan, X.G. Liu, Image‐based crack assessment of bridge piers using unmanned aerial vehicles and three‐dimensional scene reconstruction, Comput.-Aided Civil Infrastruct. Eng. 35 (5) (2020), pp. 511-529, doi: 10.1111/mice.12501. 4. C. Song, L. Wu, Z. Chen, H. Zhou, P. Lin, S. Cheng, Z. Wu, Pixel-level crack detection in images using SegNet, in: International Conference on Multi-disciplinary Trends in Artificial Intelligence, Springer, 2019, pp. 247-254, doi: 10.1007/978-3-030-33709-4_22. 5. Automated bridge surface crack detection and segmentation using computer vision-based deep learning model;Zhang;Eng. Appl. Artificial Intellig.,2022
|
|