Multi-criteria design optimization and thermodynamic analysis of a novel multi-generation energy system for hydrogen, cooling, heating, power, and freshwater
Author:
Publisher
Elsevier BV
Subject
Energy Engineering and Power Technology,Condensed Matter Physics,Fuel Technology,Renewable Energy, Sustainability and the Environment
Reference46 articles.
1. Assessment of an IGCC based trigeneration system for power, hydrogen and synthesis fuel production;Seyitoglu;Int J Hydrogen Energy,2016
2. Development, analysis and performance assessment of a combined solar and geothermal energy-based integrated system for multigeneration;Islam;Sol Energy,2017
3. 3-E analysis and optimization of an organic rankine flash cycle integrated with a PEM fuel cell and geothermal energy;Li;Int J Hydrogen Energy,2019
4. Investigation energy, exergy and electricity production performance of an integrated system based on a low-temperature geothermal resource and solar energy;Atiz;Energy Convers Manag,2019
5. Exergo-economic analysis of a low-temperature geothermal-fed combined cooling and power system;Seyfouri;Appl Therm Eng,2018
Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Development and modeling of power, hydrogen and freshwater production based on a novel double-flash geothermal power plant;Energy;2024-11
2. Techno-economic assessment and transient modeling of a solar-based multi-generation system for sustainable/clean coastal urban development;Renewable Energy;2024-10
3. 4E analysis and multi-objective optimization of a novel multi-generating cycle based on waste heat recovery from solid oxide fuel cell fed by biomass;Renewable Energy Focus;2024-09
4. Investigation into the thermodynamic properties of three coupling schemes involving CAES, MSHS, and CFPP systems;Journal of Energy Storage;2024-09
5. Deep neural network optimization of a continuous solar-geothermal-driven plant with integrated thermal and mechanical energy storage: Incorporating bypass mechanism;Energy;2024-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3