1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL http://tensorflow.org/ Software available from tensorflow.org.
2. Adaptative Monte Carlo method, a variance reduction technique;Arouna;Monte Carlo Methods Appl.,2004
3. Başoğlu, İ., Hörmann, W., 2014. Efficient stratified sampling implementations in multiresponse simulation, In: Proceedings of the 2014 Winter Simulation Conference A. Tolk, S.Y. Diallo, I.O. Ryzhov, L. Yilmaz, S. Buckley, J.A. Millerm, eds., Winter Simulation Conference, Dec, pp. 757–768.
4. Optimally stratified importance sampling for portfolio risk with multiple loss thresholds;Başoğlu;Optimization,2013
5. Birge, J.R., 1995. Quasi-Monte Carlo approaches to option pricing. Technical Report 94–19, University of Michigan, Ann Arbor.