1. Note on a counterexample to Hilbert’s fourteenth problem given by P. Roberts;A’Campo-Neuen;Indag. Math. (N.S.),1994
2. Bayer, T., (1998). Algorithmic aspects of invariant theory. Diploma Thesis, RISC Report 98–06, Research Institute for Symbolic Computation, J. Kepler University, Linz
3. Bayer, T., (2001). rinvar.lib. A Singular 2.0 library for computing invariant rings of reductive groups
4. The magma algebra system I: the user language;Bosma;J. Symbolic Comput.,1997
5. Gröbner bases—an algorithmic method in polynomial ideal theory;Buchberger,1985