Robust bounds for fractional-order systems with uncertain order and structured perturbations via Cylindrical Algebraic Decomposition method
Author:
Funder
National Natural Science Foundation of China
Publisher
Elsevier BV
Subject
Applied Mathematics,Computer Networks and Communications,Signal Processing,Control and Systems Engineering
Reference19 articles.
1. Pole-assignment for uncertain systems with structured perturbations;Juang;IEEE Trans. Circ. Syst.,2002
2. Robust stability bounds for nonclassically damped systems with multi-directional perturbations;Cao;Int. J. Mech. Sci.,2007
3. Analysis of stability robustness for generalized state-space systems with structured perturbations;Fang;Syst. Control Lett.,1993
4. Lmi-based sufficient conditions for robust stability and stabilization of lti-fractional-order systems subjected to interval and polytopic uncertainties;Adelipour;Trans. Inst. Measur. Control,2015
5. Robust stability and stabilization of fractional-order linear systems with polytopic uncertainties;Chen;Appl. Math. Comput.,2015
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Robust asymptotic stability analysis for fractional-order systems with commensurate time delays: The 1 < β ≤ 2 case;Applied Mathematics and Computation;2024-08
2. Robust Stability and Stabilization of Incommensurate Fractional-Order Uncertain Systems: A Parameter Space Method;2022 China Automation Congress (CAC);2022-11-25
3. Novel robust stability conditions of fractional-order systems with structured uncertain parameters based on parameter-dependent functions: the 0<α<1 case;International Journal of General Systems;2022-11-02
4. A Generalization of Routh–Hurwitz Stability Criterion for Fractional-Order Systems with Order α ∈ (1, 2);Fractal and Fractional;2022-09-30
5. Complete Robust Stability Domain of Fractional-Order Linear Time-Invariant Single Parameter-Dependent Systems With the Order 0 < α < 2;IEEE Transactions on Circuits and Systems II: Express Briefs;2022-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3