Well production forecast in Volve field: Application of rigorous machine learning techniques and metaheuristic algorithm
Author:
Publisher
Elsevier BV
Subject
Geotechnical Engineering and Engineering Geology,Fuel Technology
Reference75 articles.
1. Data-driven dynamic risk analysis of offshore drilling operations;Adedigba;J. Petrol. Sci. Eng.,2018
2. A hybrid particle swarm optimization and support vector regression model for modelling permeability prediction of hydrocarbon reservoir;Akande;J. Petrol. Sci. Eng.,2017
3. Simulating the behavior of reservoirs with convolutional and recurrent neural networks;Alakeely,2020
4. Hybrid data driven drilling and rate of penetration optimization;Alali;J. Petrol. Sci. Eng.,2021
5. A state-of-the-art survey on deep learning theory and architectures;Alom;Electron,2019
Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Well Production Forecast Post-Liquid Lifting Measures: a Transformer-Based Seq2Seq Method with Attention Mechanism;Energy & Fuels;2024-07-13
2. Horizontal well flow rate prediction applying machine-learning model;Bulletin of the Tomsk Polytechnic University Geo Assets Engineering;2024-05-29
3. A Novel Ensemble Machine Learning Model for Oil Production Prediction with Two-Stage Data Preprocessing;Processes;2024-03-14
4. Sustainable Redevelopment of the Volve Field Amidst Recent Energy Security Challenges Faced by Northwestern Europe; A Case Study from Central North Sea;Day 1 Mon, February 12, 2024;2024-02-12
5. A novel formulation of RNN-based neural network with real-time updating – An application for dynamic hydraulic fractured shale gas production forecasting;Geoenergy Science and Engineering;2024-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3