Well-testing model identification using time-series shapelets
Author:
Publisher
Elsevier BV
Subject
Geotechnical Engineering and Engineering Geology,Fuel Technology
Reference73 articles.
1. Principal component analysis;Abdi;Wiley Interdiscip. Rev. Comput. Stat.,2010
2. Agarwal, R.G., 1980. A new method to account for producing time effects when drawdown type curves are used to analyze pressure buildup and other test data. In: Paper SPE 9289-MS Presented at the Annual Technical Conference and Exhibition, Dallas, Texas. doi: 〈http://doi.org/10.2118/9289-MS〉.
3. Alajmi, M.Ertekin, T., 2007. The development of an artificial neural network as a pressure transient analysis tool for applications in double-porosity reservoirs. In: Paper SPE 108604 Presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition, Jakarta, Indonesia. doi: 〈http://doi.org/10.2118/108604-MS〉.
4. Al-Kaabi, A.U.Lee, W.J., 1990. Using artificial neural networks to identify the well test interpretation model. In: Paper SPE 20332-PA presented at the SPE Petroleum Computer Conference, Denver, pp. 25–28. doi: 〈http://doi.org/10.2118/20332-PA〉.
5. Use of artificial intelligence in well-test interpretation;Allain;JPT,1990
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Classification and identification of extreme wind events by CNNs based on Shapelets and improved GASF-GADF;Journal of Wind Engineering and Industrial Aerodynamics;2024-10
2. Exact analytical solution of fluid flow equation in heterogeneous porous media;Arabian Journal of Geosciences;2022-12-28
3. Metaheuristic algorithm integrated neural networks for well-test analyses of petroleum reservoirs;Scientific Reports;2022-10-03
4. Smart Identification of Petroleum Reservoir Well Testing Models Using Deep Convolutional Neural Networks (GoogleNet);Journal of Energy Resources Technology;2021-05-03
5. Identifying Applications of Machine Learning and Data Analytics Based Approaches for Optimization of Upstream Petroleum Operations;Energy Technology;2020-11-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3