Accelerating k-medoid-based algorithms through metric access methods

Author:

Barioni Maria Camila N.,Razente Humberto L.,Traina Agma J.M.,Traina Caetano

Publisher

Elsevier BV

Subject

Hardware and Architecture,Information Systems,Software

Reference22 articles.

1. Barioni, M.C.N., Razente, H., Traina, A.J.M., Traina Jr., C. 2006. An efficient approach to scale up k-medoid-based algorithms in large databases. In: Brazilian Symposium on Databases (SBBD), Florianópolis, SC, Brazil. SBC, pp. 265–279.

2. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B. 1990. The R∗-tree: An efficient and robust access method for points and rectangles. In: ACM SIGMOD International Conference on Management of Data, Atlantic City, NJ. ACM, pp. 322–331.

3. An efficient k-medoids-based algorithm using previous medoid index, triangular inequality elimination criteria, and partial distance search;Chu,2002

4. M-tree: an efficient access method for similarity search in metric spaces;Ciaccia,1997

5. Knowledge discovery in large spatial databases: focusing techniques for efficient class identification;Ester,1995

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Critical slip line recognition and extraction method of slope based on modified k-medoid clustering algorithm;Computers and Geotechnics;2023-02

2. Partitioning Clustering Techniques;Clustering Techniques for Image Segmentation;2021-10-30

3. Clustering by K-Means Method and K-Medoids Method;Advances in Data Mining and Database Management;2021

4. Valuation of reactive power support provided by photovoltaic systems in distribution networks;International Transactions on Electrical Energy Systems;2020-11-10

5. High-Speed Clustering of Regional Photos Using Representative Photos of Different Regions;2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI);2018-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3