Surface roughness assessment on hole drilled through the identification and clustering of relevant external and internal signal statistical features
Author:
Publisher
Elsevier BV
Subject
Industrial and Manufacturing Engineering
Reference41 articles.
1. The Capacity of Statistical Features Extracted from Multiple Signals to Predict Tool Wear in the Drilling Process;Duo;International Journal of Advanced Manufacturing Technology,2019
2. Tool Wear Prediction in Ti-6Al-4V Machining through Multiple Sensor Monitoring and PCA Features Pattern Recognition;Caggiano;Sensors,2018
3. Frequency and Time-Frequency Analysis of Cutting Force and Vibration Signals for Tool Condition Monitoring;Jauregui;IEEE Access,2018
4. ANN Tool Wear Modelling in the Machining of Nickel Superalloy Industrial Products;D’Addona;CIRP Journal of Manufacturing Science and Technology,2011
5. Tool Wear Modelling through Regression Analysis and Intelligent Methods for Nickel Base Alloy Machining;Leone;CIRP Journal of Manufacturing Science and Technology,2011
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Statistical Methods for Decision-Making Regarding Technological Systems;Lecture Notes in Mechanical Engineering;2023-09-27
2. A systematic review on non-contact methods to estimate the surface roughness;Materials Today: Proceedings;2023-06
3. Change in Dimensions and Surface Roughness of 42CrMo4 Steel after Nitridation in Plasma and Gas;Coatings;2022-10-06
4. Advance monitoring of hole machining operations via intelligent measurement systems: A critical review and future trends;Measurement;2022-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3