An occupant-centric control framework for balancing comfort, energy use and hygiene in hot water systems: A model-free reinforcement learning approach
Author:
Publisher
Elsevier BV
Subject
Management, Monitoring, Policy and Law,Mechanical Engineering,General Energy,Building and Construction
Reference44 articles.
1. Simple methodology to estimate the mean hourly and the daily profiles of domestic hot water demand from hourly total heating readings;Marszal-Pomianowska;Energy Build,2019
2. SuisseEnergie. Production Efficace De L ’ Eau Chaude 2017.
3. Experimental study of the solar photovoltaic contribution for the domestic hot water production with heat pumps in dwellings;Aguilar;Appl Therm Eng,2016
4. Short-term energy use prediction of solar-assisted water heating system: Application case of combined attention-based LSTM and time-series decomposition;Heidari;Sol Energy,2020
5. Sinha R, Jensen BB, Pillai JR, Bojesen C, Moller-Jensen B. Modelling of hot water storage tank for electric grid integration and demand response control. 2017 52nd Int Univ Power Eng Conf UPEC 2017 2017;2017-Janua:1–6. https://doi.org/10.1109/UPEC.2017.8231964.
Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Quantification of residential water-related energy needs cohesion, validation and global representation to unlock efficiency gains;Renewable and Sustainable Energy Reviews;2025-01
2. Reinforcement learning for occupant behavior modeling in public buildings: Why, what and how?;Journal of Building Engineering;2024-11
3. Fast-apply deep autoregressive recurrent proximal policy optimization for controlling hot water systems;Applied Energy;2024-08
4. Knowledge-network-embedded deep reinforcement learning: An innovative way to high-efficiently develop an energy management strategy for the integrated energy system with renewable energy sources and multiple energy storage systems;Energy;2024-08
5. Heat loss from non-circulating domestic hot water pipes increases water consumption and energy demand;Resources, Conservation and Recycling;2024-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3