Parametric study on reinforcement learning optimized energy management strategy for a hybrid electric vehicle
Author:
Publisher
Elsevier BV
Subject
Management, Monitoring, Policy and Law,Mechanical Engineering,General Energy,Building and Construction
Reference39 articles.
1. Lida N. Gasoline results from Japanese Industry/Academia Joint Research Project: Super-Lean Burn Concept for High Efficiency SI Engine. In: 2017 ERC Symposium, Madison, WI; 2017.
2. Review of vehicle engine efficiency and emissions;Johnson;SAE Int J Engines,2018
3. Eckerle W, Sujan V, Salemme G. Future Challenges for engine manufacturers in view of future emissions legislation. SAE Technical Paper 0148-7191; 2017.
4. Current and future challenges for automotive catalysis: engine technology trends and their impact;Pischinger;Top Catal,2016
5. Impact of powertrain electrification, vehicle size reduction and lightweight materials substitution on energy use, CO2 emissions and cost of a passenger light-duty vehicle fleet;Palencia;Energy,2015
Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimal energy management strategy for electric vehicles and electricity distribution system based on quantile deep learning with enhanced African vulture optimization;Energy Reports;2024-12
2. Deep reinforcement learning based adaptive energy management for plug-in hybrid electric vehicle with double deep Q-network;Energy;2024-10
3. A data-driven solution for intelligent power allocation of connected hybrid electric vehicles inspired by offline deep reinforcement learning in V2X scenario;Applied Energy;2024-10
4. Optimizing hybrid electric vehicle coupling organic Rankine cycle energy management strategy via deep reinforcement learning;Energy and AI;2024-09
5. Achieving effective engine thermal management and waste heat storage utilisation by coupling the dual-pressure organic Rankine cycle system with hybrid electric truck;Journal of Energy Storage;2024-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3