Optimization of operating conditions for compressor performance by means of neural network inverse
Author:
Publisher
Elsevier BV
Subject
Management, Monitoring, Policy and Law,Mechanical Engineering,General Energy,Building and Construction
Reference31 articles.
1. Neural-network based analysis and prediction of a compressor characteristic performance map;Yu;Appl Energy,2007
2. An artificial neural network approach to compressor performance prediction;Ghorbanian;Appl Energy,2009
3. Kurzke J. How to get component maps for an aircraft gas-turbine performance calculations. In: ASME 96-GT-164; 1996.
4. The gas turbine handbook;Boyce,2006
5. Gas turbine performance;Walsh,2004
Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multi-objective optimization for impeller structure parameters of fuel cell air compressor using linear-based boosting model and reference vector guided evolutionary algorithm;Applied Energy;2024-06
2. Prediction of performance parameters of a hermetic reciprocating compressor under different discharge lift limiter heights by machine learning;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2024-05-05
3. Prediction of performance parameters of a hermetic reciprocating compressor applying an artificial neural network;Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering;2024-03-04
4. Study on Flow Field Analysis and Structure Optimization in Impeller of Single-Stage Centrifugal Compressor;Innovation & Technology Advances;2024-01-16
5. A Novel Approach Towards Gas Turbine Emission Reduction by Using Neural Networks;2023 International Conference on Sustainable Communication Networks and Application (ICSCNA);2023-11-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3