Applicatons of Ink-Jet Printing Technology to BioMEMS and Microfluidic Systems

Author:

Cooley Patrick,Wallace David,Antohe Bogdan

Abstract

Applications of microfluidics and MEMS (micro-electromechanical systems) technology are emerging in many areas of biological and life sciences. Non-contact microdispensing systems for accurate, high-throughput deposition of bioactive fluids can be an enabling technology for these applications. In addition to bioactive fluid dispensing, ink-jet based microdispensing allows integration of features (electronic, photonic, sensing, structural, etc.) that are not possible, or very difficult, with traditional photolithographic-based MEMS fabrication methods. Our single fluid and multifluid (MatrixJet™) piezoelectric microdispensers have been used for spot synthesis of peptides, production of microspheres to deliver drugs/biological materials, microprinting of biodegradable polymers for cell proliferation in tissue engineering applications, and spot deposition for DNA, diagnostic immunoassay, antibody and protein arrays. We have created optical elements, sensors, and electrical interconnects by microdeposition of polymers and metal alloys. We have also demonstrated the integration of a reversed phase microcolumn within a piezoelectric dispenser for use in the fractionation of peptides for mass spectrometer analysis.

Publisher

SAGE Publications

Subject

Medical Laboratory Technology,Computer Science Applications

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Jetting-based bioprinting: process, dispense physics, and applications;Bio-Design and Manufacturing;2024-07-12

2. Modeling of Droplet Speed Shift Keying in Microfluidic Communications;IEEE Transactions on Molecular, Biological, and Multi-Scale Communications;2024-03

3. Two-dimensional printing of nanoparticles as a promising therapeutic method for personalized drug administration;Pharmaceutical Development and Technology;2023-10-19

4. Droplet speed-shift keying;Proceedings of the 10th ACM International Conference on Nanoscale Computing and Communication;2023-09-20

5. Recent Advancements in Biological Microelectromechanical Systems (BioMEMS) and Biomimetic Coatings;Coatings;2022-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3