Short-term power prediction for renewable energy using hybrid graph convolutional network and long short-term memory approach

Author:

Liao Wenlong,Bak-Jensen Birgitte,Pillai Jayakrishnan Radhakrishna,Yang ZheORCID,Liu Kuangpu

Publisher

Elsevier BV

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology

Reference21 articles.

1. Improved deep mixture density network for regional wind power probabilistic forecasting;Zhang;IEEE Trans. Power Syst.,2020

2. Modeling daily load profiles of distribution network for scenario generation using flow-based generative network;Ge;IEEE Access,2020

3. Robust voltage control considering uncertainties of renewable energies and loads via improved generative adversarial network;Zhao;J. Mod. Power Syst. Clean Energy.,2020

4. E. Pelikan, K. Eben, J. Resler, P. Jurus, P. Krc, M. Brabec, T. Brabec, and P. Musilek, "Wind power forecasting by an empirical model using NWP outputs," in Proc. 9th Int. Conf. Environ. Elect. Eng., pp. 45–48.

5. Probabilistic solar power forecasting based on weather scenario generation;Sun;Appl. Energy.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3