Deep reinforcement learning-based operation of fast charging stations coupled with energy storage system
Author:
Funder
Incheon National University
Publisher
Elsevier BV
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology
Reference39 articles.
1. A comprehensive review of DC fast-charging stations with energy storage: architectures, power converters, and analysis;Rafi;IEEE Trans. Transp. Electrif.,2021
2. An overview of costs for vehicle components, fuels, greenhouse gas emissions and total cost of ownership update 2017;Kochhan;Tum Creat.,2017
3. Coordinated planning of extreme fast charging stations and power distribution networks considering on-site storage;Shao;IEEE Trans. Intell. Transp. Syst.,2021
4. Demand-side management using deep learning for smart charging of electric vehicles;Lopez;IEEE Trans. Smart Grid,2019
5. Different charging infrastructures along with smart charging strategies for electric vehicles;Sachan;Sustain. Cities Soc.,2020
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Reinforcement learning for electric vehicle charging scheduling: A systematic review;Transportation Research Part E: Logistics and Transportation Review;2024-10
2. A novel microgrid formation strategy for resilience enhancement considering energy storage systems based on deep reinforcement learning;Journal of Energy Storage;2024-10
3. An integrated techno-economic approach for design and energy management of heavy goods electric vehicle charging station with energy storage systems;Applied Energy;2024-09
4. Studying the Optimal Frequency Control Condition for Electric Vehicle Fast Charging Stations as a Dynamic Load Using Reinforcement Learning Algorithms in Different Photovoltaic Penetration Levels;Energies;2024-05-28
5. Deep Reinforcement Learning-Based Scheduling Optimization of a Wind-solar Coupled CHP Unit System Considering Source-load Uncertainty;2024 3rd Conference on Fully Actuated System Theory and Applications (FASTA);2024-05-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3