Biofilm formation in an in vitro model of cochlear implants with removable magnets

Author:

Loeffler Kimberly A.1,Johnson Trey A.1,Burne Robert A.2,Antonelli Patrick J.1

Affiliation:

1. Departments of Otolaryngology, University of Florida, Gainesville, FL.

2. Departments of Oral Biology, University of Florida, Gainesville, FL.

Abstract

Background Cochlear implant (CI) recesses, such as the removable magnet pocket, appear to harbor more biofilm than smooth surfaces. The aim of this study was to examine the impact of removable magnets on biofilm formation in an in vitro model. Methods Silastic models were constructed to represent CIs with and without a magnet pocket and with and without a titanium blank in the pocket. CIs were exposed to a culture of a biofilm forming strain of Staphylococcus aureus. Adherence of planktonic bacteria and biofilm formation were assessed with quantitative bacterial counts and scanning electron microscopy. Results Adherent bacterial counts were significantly higher in CI models with an empty magnet pocket ( P = 0.0097). Biofilm formation was significantly lower in CI models without a magnet pocket ( P = 0.0121). Conclusions CI magnet pockets harbor bacteria that can increase biofilm development in an in vitro model.

Publisher

SAGE Publications

Subject

Otorhinolaryngology,Surgery

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3