The Turaev genus of an adequate knot
Author:
Publisher
Elsevier BV
Subject
Geometry and Topology
Reference27 articles.
1. An estimation of the alternation number of a torus knot;Abe;J. Knot Theory Ramifications,2009
2. T. Abe, K. Kishimoto, The dealternating number and the alternation number of a closed 3-braid, J. Knot Theory Ramifications, in press
3. Almost alternating links;Adams;Topology Appl.,1992
4. The Knot Book;Adams,2004
5. The spread and extreme terms of Jones polynomials;Bae;J. Knot Theory Ramifications,2003
Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Near extremal Khovanov homology of Turaev genus one links;Topology and its Applications;2024-04
2. Jones diameter and crossing number of knots;Advances in Mathematics;2023-03
3. –compactifiable manifolds which are not pseudocollarable;Algebraic & Geometric Topology;2022-12-31
4. Concordance Invariants and the Turaev Genus;International Mathematics Research Notices;2021-06-24
5. Ideal points of character varieties, algebraic non-integral representations, and undetected closed essential surfaces in 3–manifolds;Proceedings of the American Mathematical Society;2020-02-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3