Machine learning-based detection of the man-in-the-middle attack in the physical layer of 5G networks
-
Published:2024-11
Issue:
Volume:136
Page:102998
-
ISSN:1569-190X
-
Container-title:Simulation Modelling Practice and Theory
-
language:en
-
Short-container-title:Simulation Modelling Practice and Theory
Author:
Qasem Abdullah,
Tahat AshrafORCID
Reference59 articles.
1. Artificial intelligence-based security authentication: Applications in wireless multimedia networks;Qiu;IEEE Access,2019
2. A feature-based learning system for internet of things applications;Wu;IEEE Internet Things J.,2019
3. Homomorphic encryption;Nita,2023
4. J. Costa-Requena, J.L. Santos, V.F. Guasch, K. Ahokas, G. Premsankar, S. Luukkainen, O.L. Pérez, M.U. Itzazelaia, I. Ahmad, M. Liyanage, M. Ylianttila, E.M. de Oca, SDN and NFV integration in generalized mobile network architecture, in: 2015 European Conference on Networks and Communications, EuCNC, 2015, pp. 154–158, http://dx.doi.org/10.1109/EuCNC.2015.7194059.
5. Machine learning for intelligent authentication in 5G and beyond wireless networks;Fang;IEEE Wirel. Commun.,2019