Evaluating risk of water mains failure using a Bayesian belief network model

Author:

Kabir Golam,Tesfamariam Solomon,Francisque Alex,Sadiq Rehan

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Elsevier BV

Subject

Information Systems and Management,Management Science and Operations Research,Modelling and Simulation,General Computer Science,Industrial and Manufacturing Engineering

Reference89 articles.

1. Agarwal, M. (2010). Developing a framework for selecting condition assessment technologies for water and wastewater pipes. MSc dissertation, Virginia Polytechnic Institute and State University, Blacksburg, USA.

2. Al-Barqawi, H., & Zayed, T. (2006b). Assessment model of water main conditions, pipelines. July 30–August 2, Chicago, Illinois.

3. Condition rating model for underground infrastructure sustainable water mains;Al-Barqawi;Journal of Performance of Constructed Facilities,2006

4. Sustainable infrastructure management: Performance of water main;Al-Barqawi;Journal of Infrastructure Systems,2008

5. Amaitik, N. M., & Amaitik, S. M. (2008). Development of PCCP wire breaks prediction model using artificial neural networks. In International pipelines conference, July 22–27, Atlanta, Georgia, USA.

Cited by 178 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bayesian network structure learning using scatter search;Knowledge-Based Systems;2024-09

2. Developing an Open Repository of Water Main Break Prediction Models in Kitchener;The 3rd International Joint Conference on Water Distribution Systems Analysis & Computing and Control for the Water Industry (WDSA/CCWI 2024);2024-08-29

3. Measures of extended fractional Deng entropy and extropy with applications;Communications in Statistics - Simulation and Computation;2024-08-19

4. Prediction of water–main failures and management of the associated risks using integrated predictive analytics approach;Safety and Reliability;2024-08

5. The application of deep learning in pipeline inspection: current status and challenges;Ships and Offshore Structures;2024-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3