Feature selection by separability assessment of input spaces for transient stability classification based on neural networks
Author:
Publisher
Elsevier BV
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology
Reference19 articles.
1. On-line power system security analysis;Balu;Proc IEEE,1992
2. Transient stability screening using artificial neural networks within a dynamic security assessment system;Edwards;IEE Proc—Gener Transm Distrib,1996
3. Zayan MB, El-Sharkawi MA, Prasad NR. Comparative study of feature extraction techniques for neural network classifier [power system simulation]. Proceedings of International Conference on Intelligent Systems Applications to Power Systems (ISAP'96), Orlando; January 28–February 2, 1996. p. 400–4.
4. Muknahalipatna S, Chowdhury BH. Input dimension reduction in neural network training—case study in transient stability assessment of large systems. Proceedings of the International Conference on Intelligent Systems Applications to Power Systems (ISAP'96), Orlando; January 28–February 2, 1996. p. 50–4.
5. Application of artificial neural networks in power system security and vulnerability assessment;Zhou;IEEE Trans Power Syst,1994
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. AI-oriented Smart Power System Transient Stability: The Rationality, Applications, Challenges and Future Opportunities;Sustainable Energy Technologies and Assessments;2023-03
2. Transient stability assessment in bulk power grids using sequential minimal optimization based support vector machine with pinball loss;Electric Power Systems Research;2023-01
3. Online dynamic security assessment of wind integrated power system using SDAE with SVM ensemble boosting learner;International Journal of Electrical Power & Energy Systems;2021-02
4. Transient Stability Feature Selection Method Based on Deep Learning Technology;Advances in Intelligent Systems and Computing;2020
5. A preventive transient stability control method based on support vector machine;Electric Power Systems Research;2019-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3