Stochastic Day-ahead operation of cascaded hydropower systems with Bayesian neural network-based scenario generation: A Portland general electric system study
Author:
Funder
Office of Energy Efficiency and Renewable Energy
Water Power Technologies Office
U.S. Department of Energy
Publisher
Elsevier BV
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology
Reference36 articles.
1. Operation rule derivation of hydropower reservoir by k-means clustering method and extreme learning machine based on particle swarm optimization;Feng;J Hydrol,2019
2. Multi-year optimal operation strategy of Danjiangkou reservoir after dam heightening for the middle route of the south–north water transfer project;Lian;Water Supply,2016
3. A scalable river flow forecast and basin optimization system for hydropower plants;Buhan;IEEE Trans Sustain Energy,2020
4. Risk analysis method of cascade plants operation in medium term based on multi-scale market and settlement rules;Lu;IEEE Access,2020
5. Machine learning and data-driven techniques for the control of smart power generation systems: an uncertainty handling perspective;Sun;Engineering,2021
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3