DAAL-WS: A weakly-supervised method integrated with data augmentation and active learning strategies for MLS point cloud semantic segmentation
-
Published:2024-07
Issue:
Volume:131
Page:103970
-
ISSN:1569-8432
-
Container-title:International Journal of Applied Earth Observation and Geoinformation
-
language:en
-
Short-container-title:International Journal of Applied Earth Observation and Geoinformation
Author:
Lei Xiangda, Guan Haiyan, Ma LingfeiORCID, Liu JiachengORCID, Yu Yogntao, Wang LanyingORCID, Dong Zhen, Ni Huan, Li Jonathan
Reference43 articles.
1. Armeni, I., Sener, O., Zamir, A.R., Jiang, H., Brilakis, I., Fischer, M., Savarese, S., 2016. 3D Semantic Parsing of Large-Scale Indoor Spaces. In: Proc. CVPR, pp. 1534-1543. doi:10.1109/CVPR.2016.170. 2. Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., Gall, J., 2019. Semantickitti: A dataset for semantic scene understanding of lidar sequences. In: Proc. ICCV, pp. 9296-9306. doi:10.1109/ICCV.2019.00939. 3. Autonomous driving in urban environments: approaches, lessons and challenges;Campbell;Philos. Trans. R. Soc. A,2010 4. Background-aware 3-D point cloud segmentation with dynamic point feature aggregation;Chen;IEEE Trans. Geosci. Remote Sens.,2022 5. Resdlps-net: joint residual-dense optimization for large-scale point cloud semantic segmentation;Du;ISPRS J. Photogramm. Remote Sens.,2021
|
|