Funder
National Natural Science Foundation of China
Reference35 articles.
1. Deep learning-based semantic segmentation of urban-scale 3D meshes in remote sensing: A survey;Adam;Int. J. Appl. Earth Obs. Geoinf.,2023
2. Forest SAR tomography: Principles and applications;Aghababaei;IEEE Geosci. Remote Sens. Mag.,2020
3. Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., Gall, J., 2019. Semantickitti: A dataset for semantic scene understanding of lidar sequences. In: Proc. IEEE Conf. Comput. Vis. Pattern Recog.. pp. 9297–9307.
4. Berman, M., Triki, A.R., Blaschko, M.B., 2018. The lovász-softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In: Proc. IEEE Conf. Comput. Vis. Pattern Recog.. pp. 4413–4421.
5. Pointmixup: Augmentation for point clouds;Chen,2020