Tracking hourly PM2.5 using geostationary satellite sensor images and multiscale spatiotemporal deep learning
-
Published:2024-11
Issue:
Volume:134
Page:104145
-
ISSN:1569-8432
-
Container-title:International Journal of Applied Earth Observation and Geoinformation
-
language:en
-
Short-container-title:International Journal of Applied Earth Observation and Geoinformation
Author:
Wang Zhige, Zhang CeORCID, Ye Su, Lu Rui, Shangguan YulinORCID, Zhou Tingyuan, Atkinson Peter M., Shi ZhouORCID
Reference59 articles.
1. Albawi, S., Mohammed, T.A., Al-Zawi, S., 2017. Understanding of a convolutional neural network, in: 2017 International Conference on Engineering and Technology (ICET). Presented at the 2017 International Conference on Engineering and Technology (ICET), pp. 1–6. 10.1109/ICEngTechnol.2017.8308186. 2. Bai, Y., Wu, L., Qin, K., Zhang, Y., Shen, Y., Zhou, Y., 2016. A Geographically and Temporally Weighted Regression Model for Ground-Level PM2.5 Estimation from Satellite-Derived 500 m Resolution AOD. Remote Sens. 8. 10.3390/rs8030262. 3. Global estimates of mortality associated with long-term exposure to outdoor fine particulate matter;Burnett;Proc. Natl Acad. Sci. USA,2018 4. Understanding meteorological influences on PM2.5 concentrations across China: a temporal and spatial perspective;Chen;Atmos. Chem. Phys.,2018 5. Stacking machine learning model for estimating hourly PM2.5 in China based on Himawari-8 aerosol optical depth data;Chen;Sci. Total Environ.,2019
|
|