Author:
Tang Song,Zou Yan,Song Zihao,Lyu Jianzhi,Chen Lijuan,Ye Mao,Zhong Shouming,Zhang Jianwei
Subject
Artificial Intelligence,Cognitive Neuroscience
Reference52 articles.
1. Unsupervised robust domain adaptation without source data;Agarwal,2021
2. Ahmed, S. M., Raychaudhuri, D. S., Paul, S., Oymak, S., & Roy-Chowdhury, A. K. (2021). Unsupervised multi-source domain adaptation without access to source data. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 10103–10112).
3. Baktashmotlagh, M., Harandi, M. T., Lovell, B. C., & Salzmann, M. (2014). Domain adaptation on the statistical manifold. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 2481–2488).
4. Caron, M., Bojanowski, P., Joulin, A., & Douze, M. (2018). Deep clustering for unsupervised learning of visual features. In Proceedings of the 15th european conference on computer vision (pp. 139–156).
5. Chen, X., Wang, S., Long, M., & Wang, J. (2019). Transferability vs. discriminability: Batch spectral penalization for adversarial domain adaptation. In Proceedings of the 36th international conference on machine learning (pp. 1081–1090).
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献