Adaptively identify and refine ill-posed regions for accurate stereo matching
-
Published:2024-10
Issue:
Volume:178
Page:106394
-
ISSN:0893-6080
-
Container-title:Neural Networks
-
language:en
-
Short-container-title:Neural Networks
Author:
Liu Changlin,
Sun Linjun,
Ning XinORCID,
Xu Jian,
Yu LinaORCID,
Zhang Kaijie,
Li Weijun
Reference50 articles.
1. SelfVIO: Self-supervised deep monocular visual–Inertial odometry and depth estimation;Almalioglu;Neural Networks,2022
2. Correlate-and-excite: Real-time stereo matching via guided cost volume excitation;Bangunharcana,2021
3. Chabra, R., Straub, J., Sweeney, C., Newcombe, R., & Fuchs, H. (2019). Stereodrnet: Dilated residual stereonet. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 11786–11795).
4. Chang, J.-R., & Chen, Y.-S. (2018). Pyramid stereo matching network. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5410–5418).
5. Chen, L., Wang, W., & Mordohai, P. (2023). Learning the Distribution of Errors in Stereo Matching for Joint Disparity and Uncertainty Estimation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 17235–17244).