GXNOR-Net: Training deep neural networks with ternary weights and activations without full-precision memory under a unified discretization framework

Author:

Deng Lei,Jiao Peng,Pei Jing,Wu Zhenzhi,Li GuoqiORCID

Funder

National Natural Science Foundation of China

Independent Research Plan of Tsinghua University

Publisher

Elsevier BV

Subject

Artificial Intelligence,Cognitive Neuroscience

Reference33 articles.

1. Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations;Benjamin;Proceedings of the IEEE,2014

2. Chen, T., Du, Z., Sun, N., Wang, J., Wu, C., & Chen, Y. et al., (2014). Diannao: a small-footprint high-throughput accelerator for ubiquitous machine-learning. In International conference on architectural support for programming languages and operating systems (pp. 269–284).

3. Binaryconnect: Training deep neural networks with binary weights during propagations;Courbariaux;Advances in Neural Information Processing Systems (NIPS),2015

4. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., & Bengio, Y. (2016). Binarized neural networks: Training deep neural networks with weights and activations constrained to +1 or −1, arXiv preprint arXiv:1602.02830.

5. Devlin, J., Zbib, R., Huang, Z., Lamar, T., Schwartz, R., & Makhoul, J. (2014). Fast and robust neural network joint models for statistical machine translation. In Proc. annual meeting of the association for computational linguistics (pp. 1370–1380).

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contemporary Advances in Neural Network Quantization: A Survey;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. Process-in-Memory realized by nonvolatile Task-Scheduling and Resource-Sharing XNOR-Net hardware Accelerator architectures;AEU - International Journal of Electronics and Communications;2024-05

3. A Precision-Scalable Deep Neural Network Accelerator With Activation Sparsity Exploitation;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2024-01

4. Quantization of Neural Networks;Computational Intelligence Methods and Applications;2024

5. 7 μJ/inference end-to-end gesture recognition from dynamic vision sensor data using ternarized hybrid convolutional neural networks;Future Generation Computer Systems;2023-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3