1. Baldini Soares, L., FitzGerald, N., Ling, J., & Kwiatkowski, T. (2019). Matching the Blanks: Distributional Similarity for Relation Learning. In Proceedings of the 57th annual meeting of the association for computational linguistics (pp. 2895–2905). Florence, Italy: URL https://aclanthology.org/P19-1279.
2. Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., & Askell, A. (2020). Language models are few-shot learners. In Proceedings of the 34th conference on neural information processing systems (pp. 1877–1901). Vancouver, Canada: URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.
3. Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. E. (2020). A Simple Framework for Contrastive Learning of Visual Representations. In Proceedings of the 37th international conference on machine learning (pp. 1597–1607). Vienna, Austria: URL http://proceedings.mlr.press/v119/chen20j/chen20j.pdf.
4. Chen, X., Zhang, N., Xie, X., Deng, S., Yao, Y., Tan, C., Huang, F., Si, L., & Chen, H. (2022). KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction. In Proceedings of the ACM web conference 2022 (pp. 2778–2788). New York, NY, USA: http://dx.doi.org/10.1145/3485447.3511998.
5. Chuang, Y.-S., Dangovski, R., Luo, H., Zhang, Y., Chang, S., Soljacic, M., Li, S.-W., Yih, W.-t., Kim, Y., & Glass, J. (2022). DiffCSE: Difference-based contrastive learning for sentence embeddings. In Proceedings of the 2022 conference of the North American chapter of the association for computational linguistics: human language technologies (pp. 4207–4218). Seattle, United States: URL https://aclanthology.org/2022.naacl-main.311.