Computer treatment of the integro-differential equations of collective non-ruin; the finite time case
Author:
Publisher
Elsevier BV
Subject
Applied Mathematics,Modelling and Simulation,Numerical Analysis,General Computer Science,Theoretical Computer Science
Reference23 articles.
1. Some problems in the collective theory of risk;Arfwedson;Skand. Aktuar. Tidskr,1950
2. Solution of nonlinear evolution problems by parallelised collocation-interpolation methods;Bonzani;Comput. Math. Appl.,1997
3. Implicit Runge–Kutta methods of optimal order for Volterra integro-differential equations;Brunner;Math. Comput.,1984
4. J.P. Eade, The ruin problem for mixed Poisson risk processes, Scand. Actuar. J. (1983) 193–210.
5. Spline collocation methods for a class of hyperbolic partial integro-differential equations;Fairweather;SIAM J. Numer. Anal.,1994
Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A high accurate and convergent numerical framework for solving high-order nonlinear Volterra integro-differential equations;Journal of Computational and Applied Mathematics;2023-03
2. Solution of Ruin Probability for Continuous Time Model Based on Block Trigonometric Exponential Neural Network;Symmetry;2020-05-26
3. Numerical solution of high-order linear Volterra integro-differential equations by using Taylor collocation method;International Journal of Computer Mathematics;2018-06-17
4. Piecewise Legendre spectral-collocation method for Volterra integro-differential equations;LMS Journal of Computation and Mathematics;2015
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3