1. W. Samek, T. Wiegand, and K.-R. Müller, “Explainable Artificial Intelligence: Understanding, Visualizing and Interpreting Deep Learning Models,” arXiv:1708.08296, Aug. 2017, Accessed: Mar. 02, 2022. [Online]. Available: http://arxiv.org/abs/1708.08296.
2. Stop Explaining Black Box Machine Learning Models for High Stakes Decisions and Use Interpretable Models Instead;Rudin;Nat. Mach. Intell.,2019
3. Stigma, biomarkers, and algorithmic bias: recommendations for precision behavioral health with artificial intelligence;Walsh;JAMIA Open,2020
4. A. Selbst, J. Powles, “‘Meaningful Information’ and the Right to Explanation,” in: Proceedings of the 1st Conference on Fairness, Accountability and Transparency, PMLR , PMLR, Jan. 2018, pp. 48–48. Accessed: Sep. 20, 2022. [Online]. Available: https://proceedings.mlr.press/v81/selbst18a.html.
5. Z. C. Lipton, D. C. Kale, and R. Wetzel, “Modeling Missing Data in Clinical Time Series with RNNs,” vol. 56, 2016, [Online]. Available: http://arxiv.org/abs/1606.04130.