1. Corrosiveness mapping of bridge decks using image-based analysis of GPR data;Abouhamad;Autom. Constr.,2017
2. Ahmed, E., Saint, A., Shabayek, A.E.R., Cherenkova, K., Das, R., Gusev, G., Aouada, D., Ottersten, B., 2018. A survey on deep learning advances on different 3D data representations. arXiv preprint arXiv:1808.01462.
3. Benefits of a 3D geological model for major tunnelling works: an example from Farringdon, east–central London, UK;Aldiss;Q. J. Eng. Geol. Hydrogeol.,2012
4. Prediction of geological hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks;Alimoradi;Tunn. Undergr. Space Technol.,2008
5. A state-of-the-art survey on deep learning theory and architectures;Alom;Electronics,2019