1. Advanced steel microstructural classification by deep learning methods;Azimi;Sci. Rep.,2018
2. Discrimination of pores and cracks in iron ore pellets using deep learning neural networks;Bezerra;REM – Int. Eng. J.,2020
3. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L., 2014. Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs. arXiv:1412.7062 [cs.CV]. https://arxiv.org/abs/1412.7062.
4. Chen, L.-C., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking Atrous Convolution for Semantic Image Segmentation. arXiv:1706.05587 [cs.CV]. https://arxiv.org/abs/1706.05587.
5. Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L., 2018a. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 2018, 40(4):834–48. https://doi.org/10.1109/TPAMI.2017.2699184.