1. L. Tian, N. Tang, T. Ngai, C. Wu, Y. Ruan, et al., Hybrid Fracture Fixation Systems Developed for Orthopaedic Applications: a General Review, Elsevier, Undefined 2019, (n.d.). https://www.sciencedirect.com/science/article/pii/S2214031X18300548. (Accessed December 8, 2020).
2. P. Pankaj, S.X.- Injury, The Risk of Loosening of Extramedullary Fracture Fixation Devices, Elsevier. (n.d.), Undefined 2019. https://doi.org/10.1016/j.injury.2019.03.051.
3. C. Donnelley, E. von Kaeppler, H.R.- Injury, Monoplanar External Fixation of Comminuted Open Tibial Shaft Fractures Predicts Loss of Alignment by One Year Compared to a Statically Locked Intramedullary SIGN Nail, Elsevier, Undefined 2020, (n.d.). https://www.sciencedirect.com/science/article/pii/S0020138320308986. (Accessed December 9, 2020).
4. A. MacLeod, P.P.- Injury, Pre-operative Planning for Fracture Fixation Using Locking Plates: Device Configuration and Other Considerations, Elsevier, Undefined 2018, (n.d.). https://www.sciencedirect.com/science/article/pii/S0020138318302961 (Accessed December 8, 2020).
5. S. Lee, S. György, J. Choi, J. Choi, S.K.-J. of Cranio, Carbon Plate Shows Even Distribution of Stress, Decreases Screw Loosening, and Increases Recovery of Preoperative Daily Feed Intake Amount in a Rabbit Model of mandibular continuity defects, Elsevier, Undefined 2014, (n.d.). https://www.sciencedirect.com/science/article/pii/S101051821300262X. (Accessed December 8, 2020).